With one hand, “pop” one end of the slinky with a single, quick, longitudinal shove to create a pulse wave, and watch the pulse travel down the length of the slinky. You can increase (or decrease) the speed of the pulse by changing the tension in the slinky (lengthening or shortening the slinky).
As the slinky moves down the steps, energy is transferred along its length in a longitudinal or compressional wave, which resembles a sound wave that travels through a substance by transferring a pulse of energy to the next molecule. How quickly the wave moves depends on the spring constant and the mass of the metal.
A slinky can easily demonstrate the two basic types of waves, longitudinal and transverse. In a longitudinal wave the particles move parallel to the direction the wave is moving. In a transverse wave the particles move at right angles to the direction of wave travel.
A slinky can easily demonstrate the two basic types of waves, longitudinal and transverse. In a longitudinal wave the particles move parallel to the direction the wave is moving. In a transverse wave the particles move at right angles to the direction of wave travel.
If the bottom of the slinky is hanging freely, the kinetic energy of the compression wave transfers to spring potential energy as the slinky extends further downward. The spring potential energy is then converted back into kinetic energy as the slinky bounces upwards.
If the bottom of the slinky is hanging freely, the kinetic energy of the compression wave transfers to spring potential energy as the slinky extends further downward. The spring potential energy is then converted back into kinetic energy as the slinky bounces upwards.
A slow motion video shows that the bottom end stays stationary while the top moves towards it. As they meet the collapsed slinky then moves towards the ground. This happens because the bottom end has balanced forces acting upon it (gravity pulling it down and tension in the spring pulling it up).
Slinkys were first sold at Gimbel's Department Store for the 1945 Christmas season. In 1948, they opened a factory to build the Slinky toy. More than 250 million Slinkys have been sold. The Slinky jingle: "It's Slinky, it's Slinky, for fun it's a wonderful toy.
As the slinky moves down the steps, energy is transferred along its length in a longitudinal or compressional wave, which resembles a sound wave that travels through a substance by transferring a pulse of energy to the next molecule. How quickly the wave moves depends on the spring constant and the mass of the metal.
A slow motion video shows that the bottom end stays stationary while the top moves towards it. As they meet the collapsed slinky then moves towards the ground. This happens because the bottom end has balanced forces acting upon it (gravity pulling it down and tension in the spring pulling it up).